Best Artificial Intelligence Books

Here you will get Best Artificial Intelligence Books For you.This is an up-to-date list of recommended books.

1. Artificial Intelligence: A Modern Approach (Pearson Series in Artifical Intelligence)

Author: by Stuart Russell
1136 pages

View on Amazon

The most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence The long-anticipated revision of Artificial Intelligence: A Modern Approach explores the full breadth and depth of the field of artificial intelligence (AI). The 4th Edition brings readers up to date on the latest technologies, presents concepts in a more unified manner, and offers new or expanded coverage of machine learning, deep learning, transfer learning, multiagent systems, robotics, natural language processing, causality, probabilistic programming, privacy, fairness, and safe AI.

2. Deep Learning (Adaptive Computation and Machine Learning series)

Author: by Ian Goodfellow
The MIT Press
800 pages

View on Amazon

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.

Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceXDeep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs.

The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning.

3. A Thousand Brains: A New Theory of Intelligence

Author: by Jeff Hawkins
Basic Books
288 pages

View on Amazon

A bestselling author, neuroscientist, and computer engineer unveils a theory of intelligence that will revolutionize our understanding of the brain and the future of AI. For all of neuroscience’s advances, we’ve made little progress on its biggest question: How do simple cells in the brain create intelligence?

Jeff Hawkins and his team discovered that the brain uses maplike structures to build a model of the world-not just one model, but hundreds of thousands of models of everything we know. This discovery allows Hawkins to answer important questions about how we perceive the world, why we have a sense of self, and the origin of high-level thought.

A Thousand Brains heralds a revolution in the understanding of intelligence. It is a big-think book, in every sense of the word.

4. An Introduction to Statistical Learning: with Applications in R (Springer Texts in Statistics)

Author: by Gareth James
440 pages

View on Amazon

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years.

This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented.

Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.

Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience.

5. The Hundred-Page Machine Learning Book

Author: by Andriy Burkov
160 pages

View on Amazon

Peter Norvig, Research Director at Google, co-author of AIMA, the most popular AI textbook in the world: “Burkov has undertaken a very useful but impossibly hard task in reducing all of machine learning to 100 pages. He succeeds well in choosing the topics both theory and practice that will be useful to practitioners, and for the reader who understands that this is the first 100 (or actually 150) pages you will read, not the last, provides a solid introduction to the field.”Aurlien Gron, Senior AI Engineer, author of the bestseller Hands-On Machine Learning with Scikit-Learn and TensorFlow: “The breadth of topics the book covers is amazing for just 100 pages (plus few bonus pages!.

Burkov doesn’t hesitate to go into the math equations: that’s one thing that short books usually drop. I really liked how the author explains the core concepts in just a few words. The book can be very useful for newcomers in the field, as well as for old-timers who can gain from such a broad view of the field.”Karolis Urbonas, Head of Data Science at Amazon: “A great introduction to machine learning from a world-class practitioner.”Chao Han, VP, Head of R&D at Lucidworks: “I wish such a book existed when I was a statistics graduate student trying to learn about machine learning.”Sujeet Varakhedi, Head of Engineering at eBay: “Andriy’s book does a fantastic job of cutting the noise and hitting the tracks and full speed from the first page.”Deepak Agarwal, VP of Artificial Intelligence at LinkedIn: “A wonderful book for engineers who want to incorporate ML in their day-to-day work without necessarily spending an enormous amount of time.”Vincent Pollet, Head of Research at Nuance: “The Hundred-Page Machine Learning Book is an excellent read to get started with Machine Learning.”Gareth James, Professor of Data Sciences and Operations, co-author of the bestseller An Introduction to Statistical Learning, with Applications in R: “This is a compact how to do data science manual and I predict it will become a go-to resource for academics and practitioners alike.

6. Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence

Author: by Kate Crawford
336 pages

View on Amazon

The hidden costs of artificial intelligence, from natural resources and labor to privacy, equality, and freedom”This study argues that [artificial intelligence] is neither artificial nor particularly intelligent…. A fascinating history of the data on which machine-learning systems are trained.”New Yorker”A valuable corrective to much of the hype surrounding AI and a useful instruction manual for the future.”John Thornhill, Financial Times What happens when artificial intelligence saturates political life and depletes the planet?

How is AI shaping our understanding of ourselves and our societies? Drawing on more than a decade of research, awardwinning scholar Kate Crawford reveals how AI is a technology of extraction: from the minerals drawn from the earth, to the labor pulled from low-wage information workers, to the data taken from every action and expression.

This book reveals how this planetary network is fueling a shift toward undemocratic governance and increased inequity. Rather than taking a narrow focus on code and algorithms, Crawford offers us a material and political perspective on what it takes to make AI and how it centralizes power.

7. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics)

Author: by Trevor Hastie
767 pages

View on Amazon

This book describes the important ideas in a variety of fields such as medicine, biology, finance, and marketing in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of colour graphics.

It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting-the first comprehensive treatment of this topic in any book.

This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorisation, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates.

8. Superintelligence: Paths, Dangers, Strategies

Author: by Nick Bostrom
Oxford University Press

View on Amazon

A New York Times bestsellerSuperintelligence asks the questions: What happens when machines surpass humans in general intelligence? Will artificial agents save or destroy us? Nick Bostrom lays the foundation for understanding the future of humanity and intelligent life. The human brain has some capabilities that the brains of other animals lack.

It is to these distinctive capabilities that our species owes its dominant position. If machine brains surpassed human brains in general intelligence, then this new superintelligence could become extremely powerful – possibly beyond our control. As the fate of the gorillas now depends more on humans than on the species itself, so would the fate of humankind depend on the actions of the machine superintelligence.

But we have one advantage: we get to make the first move. Will it be possible to construct a seed Artificial Intelligence, to engineer initial conditions so as to make an intelligence explosion survivable? How could one achieve a controlled detonation?

9. The Book of Why: The New Science of Cause and Effect

Author: by Judea Pearl
Basic Books
432 pages

View on Amazon

A Turing Award-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence “Correlation is not causation.” This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk.

Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality – the study of cause and effect – on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness.

Pearl’s work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence.

Anyone who wants to understand either needs The Book of Why.

10. Machine Learning for Algorithmic Trading: Predictive models to extract signals from market and alternative data for systematic trading strategies with Python, 2nd Edition

Author: by Stefan Jansen
820 pages

View on Amazon

Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Key Features Design, train, and evaluate machine learning algorithms that underpin automated trading strategies Create a research and strategy development process to apply predictive modeling to trading decisions Leverage NLP and deep learning to extract tradeable signals from market and alternative data Book Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML).

This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting.

11. Deep Learning with Python

Author: by Fran├žois Chollet
Manning Publications

View on Amazon

SummaryDeep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher Franois Chollet, this book builds your understanding through intuitive explanations and practical examples.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the TechnologyMachine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy.

We went from machines that couldn’t beat a serious Go player, to defeating a world champion. Behind this progress is deep learninga combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the BookDeep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library.

Written by Keras creator and Google AI researcher Franois Chollet, this book builds your understanding through intuitive explanations and practical examples. You’ll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you’ll have the knowledge and hands-on skills to apply deep learning in your own projects.

12. Pattern Recognition and Machine Learning (Information Science and Statistics)

Author: by Christopher M. Bishop
Springer (August 17, 2006)
738 pages

View on Amazon

This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning.

No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

13. Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning series)

Author: by Richard S. Sutton
A Bradford Book
552 pages

View on Amazon

The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment.

In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field’s key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes.

Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning.

14. The Singularity Is Near: When Humans Transcend Biology

Author: by Ray Kurzweil
672 pages

View on Amazon

Startling in scope and bravado. Janet Maslin, The New York TimesArtfully envisions a breathtakingly better world. Los Angeles TimesElaborate, smart and persuasive. The Boston GlobeA pleasure to read. The Wall Street JournalOne of CBS News’s Best Fall Books of 2005 Among St Louis Post-Dispatch’s Best Nonfiction Books of 2005 One of Amazon.

Com’s Best Science Books of 2005A radical and optimistic view of the future course of human development from the bestselling author of How to Create a Mind and The Singularity is Nearer who Bill Gates calls the best person I know at predicting the future of artificial intelligenceFor over three decades, Ray Kurzweil has been one of the most respected and provocative advocates of the role of technology in our future.

In his classic The Age of Spiritual Machines, he argued that computers would soon rival the full range of human intelligence at its best. Now he examines the next step in this inexorable evolutionary process: the union of human and machine, in which the knowledge and skills embedded in our brains will be combined with the vastly greater capacity, speed, and knowledge-sharing ability of our creations.

15. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again

Author: by Eric Topol MD
Basic Books
400 pages

View on Amazon

One of America’s top doctors reveals how AI will empower physicians and revolutionize patient care Medicine has become inhuman, to disastrous effect. The doctor-patient relationship-the heart of medicine-is broken: doctors are too distracted and overwhelmed to truly connect with their patients, and medical errors and misdiagnoses abound.

In Deep Medicine, leading physician Eric Topol reveals how artificial intelligence can help. AI has the potential to transform everything doctors do, from notetaking and medical scans to diagnosis and treatment, greatly cutting down the cost of medicine and reducing human mortality.

By freeing physicians from the tasks that interfere with human connection, AI will create space for the real healing that takes place between a doctor who can listen and a patient who needs to be heard. Innovative, provocative, and hopeful, Deep Medicine shows us how the awesome power of AI can make medicine better, for all the humans involved.

Illustrations note: 46 Halftones, black & white 11 Tables, black & white